题目内容
【题目】如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.
(1)填空:点B的坐标为________,点C的坐标为_________.
(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.
【答案】(1)(﹣1,3);(2)S=.
【解析】
试题分析:本题考查了正方形的性质、全等三角形的判定及性质、一元一次不等式的应用、三角形的面积公式以及直角梯形的面积公式,解题的关键:(1)由全等三角形的性质找出△ABB′和CC′D各边的长度;(2)解一元一次不等式找出不同情况下t的取值范围.本题属于中档题,(1)难度不大,由于是填空题,可以不用去证三角形全等省去不少时间;(2)难度不大,但是过程繁琐,做题过程中不仅用到了解一元一次不等式找x的取值范围,还用到了三角形、直角梯形的面积公式,故在解决该题型题目时,细心观察图形,通过图形的变化分类是关键.
(1)过点B作BB′⊥y轴于点B′,过点C作CC′⊥x轴于点C′,由全等三角形的性质可知AB′=CC′=DO,BB′=DC′=AO,结合各边的关系即可找出B、C点的坐标;
(2)按图形的变化分成三部分:①用时间t表示出直角三角形两直角边长度,套用三角形面积公式即可得出结论;②用时间t表示出直角梯形上、下底与高的长度,套用梯形的面积公式即可得出结论;③由正方形的面积减去剩下直角三角形的面积即可得出结论.
试题解析:(1)(﹣1,3);
(2)当0<t≤时,S=5t2;
当<t≤1时,S=5t-;
当1<t≤时,S=5t2+15t-.
综上:S=.