题目内容
【题目】在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.
(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;
(II)如图②,当α=60°时,求点C′的坐标;
(III)当点B,D′,C′共线时,求点C的坐标(直接写出结果即可).
【答案】(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②
C′(,﹣)
【解析】
(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;
(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;
(III)分两种情形分别求解即可解决问题;
解:(I)如图①,
∵A(8,0),B(0,4),
∴OB=4,OA=8,
∵AC=OC=AC′=4,
∴当OB∥AC′,四边形OBC′A是平行四边形,
∵∠AOB=90°,
∴四边形OBC′A是矩形,
∴∠AC′B=90°,∵∠AC′D′=90°,
∴B、C′、D′共线,
∴BD′∥OA,
∵AC=CO, BD=AD,
∴CD=C′D′=OB=2,
∴D′(10,4),
根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.
综上所述,满足条件的点D坐标(10,4)或(6,4).
(II)如图②,当α=60°时,作C′K⊥AC于K.
在Rt△AC′K中,∵∠KAC′=60°,AC′=4,
∴AK=2,C′K=2,
∴OK=6,
∴C′(6,2).
(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).
②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,
∴OF=FC′,设OF=FC′=x,
在Rt△ABC′中,BC′==8,
在RT△BOF中,OB=4,OF=x,BF=8﹣x,
∴(8﹣x)2=42+x2,
解得x=3,
∴OF=FC′=3,BF=5,作C′K⊥OA于K,
∵OB∥KC′,
∴==,
∴==,
∴KC′=,KF=,
∴OK=,
∴C′(,﹣).