题目内容
【题目】如图1,矩形ABCD的顶点A(6,0),B(0,8),AB=2BC,直线y=﹣x+m(m≥13)交坐标轴于M,N两点,将矩形ABCD沿直线y=﹣x+m(m≥13)翻折后得到矩形A′B′C′D′.
(1)求点C的坐标和tan∠OMN的值;
(2)如图2,直线y=﹣x+m过点C,求证:四边形BMB′C是菱形;
(3)如图1,在直线y=﹣x+m(m≥13)平移的过程中.
①求证:B′C′∥y轴;
②若矩形A′B′C′D′的边与直线y=﹣x+43有交点,求m的取值范围.
【答案】(1)2,(2)详见解析;(3)详见解析, ≤m≤.
【解析】
(1)首先利用勾股定理求得AB的长,然后证明△AOB∽△BEC,根据相似三角形的对应边的比相等求得BE的长,则OE长即可求得,从而求得C的坐标;
(2)利用待定系数法求得m的值,求得BM的长,根据四边相等的四边形是菱形即可证得;
(3)①如图3,连接BB′,同理若延长B'C'和BC交于点I,则I在MN上,过C作EQ∥MN,作出CB关于EQ的对称线段CG,则EQ就是(2)中的MN,证明B'C'∥CG即可;
②过B′作B′F⊥y轴于点F,设B′F=a,则BF=2a,设BM=B′M=b,则MF=2a﹣b,在直角△B′FM中利用勾股定理求得a和b的比值,MF和B′F即可利用m表示出来,A′和C′坐标即可求得,代入直线y=﹣x+43求得m的值,从而确定m的范围.
(1)∵A(6,0),B(0,8),
∴OA=6,OB=8,
∴AB==10,
∴BC=AB=5,
如图1,过C作CE⊥y轴于点E,
∴∠BOA=∠CEB=90°,
又∵∠BAO+∠ABO=∠EBC+∠ABO=90°,
∴∠BAO=∠EBC,
∴△AOB∽△BEC,
∴=2,
∴BE=3,CE=4,
∴OE=BE﹣OB=11,
∴点C的坐标是(4,11),
当x=0时,OM=m,当y=0时,ON=2m,
∴tan∠OMN=2;
(2)如图2,由题意得:BM=B'M,BC=B′C.
∵直线y=﹣x+m过点C(4,11),
∴11=﹣2+m,
解得:m=13,
∴BM=13﹣8=5,
∴B'M=BM=BC=B'C=5,
∴四边形BMB′C是菱形;
(3)①如图3,连接BB′,同理若延长B'C'和BC交于点I,则I在MN上,
过C作EQ∥MN,作出CB关于EQ的对称线段CG,
则EQ就是(2)中的MN,
根据(2)可得CG∥BM,且∠BCE=∠MCG,
∵MN∥EQ,
∴∠BCE=∠CIM,
又∵∠CIM=∠MIB',
∴∠BCG=∠CIB',
∴B'C'∥BM,
即B′C′∥y轴.
②如图3,过B′作B′F⊥y轴于点F,
∵BB′⊥MN,
∴tan∠MBB′=,
∴BF=2B′F,
设B′F=a,则BF=2a,设BM=B′M=b,则MF=2a﹣b,
在直角△B′FM中,a2+(2a﹣b)2=b2,
解得:a:b=4:5,
∴MF:B′F:B′M=3:4:5,
∵B′M=BM=m﹣8,
∴MF=(m﹣8),B′F=(m﹣8),
则OF=OB+BF=8+2a=8+2B'F=8+2×(m-8)=,
A'F=B’F+A'B'=(m﹣8)+10=,
∴A′坐标是(,),
C'的纵坐标是OF﹣B'C'=﹣5=,
则C′的坐标是:(,),
当点A′在直线y=﹣x+43上时,m=,
当点C′在直线y=﹣x+43上时,m=,
∴则m的取值范围是≤m≤.
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?