题目内容

如图,已知等边△ABC中,D、E两点在直线BC上,且∠DAE=120°.
⑴判断△ABD是否与△ECA相似,并说明你的理由;
⑵当CE·BD=16时,求△ABC的周长.

解:⑴证明:∵△ABC是等边三角形,∴∠BAC=60°.
∵∠DAE=120°,∴∠DAB+∠CAE=60°.
∵∠DAB+∠D=∠ABC=60°,∴∠D=∠CAE.
∵∠DBA=∠ACE=120°,∴△ABD∽△ACE;
⑵解:∵△ABD∽△ACE,∴,即AB·AC=BD·CE.
∵BD·CE=16,∴AB·AC=16.
∵AB=AC,∴,∴AB=4,
∴△ABC的周长为12.

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网