题目内容

如图,已知等边三角形ABC的边长为10,点P、Q分别为边AB、AC上的一个动点,点P从点B出发以1cm/s的速度向点A运动,点Q从点C出发以2cm/s的速度向点A运动,连接PQ,以Q为旋转中心,将线段PQ按逆时针方向旋转60°得线段QD,若点P、Q同时出发,则当运动
10
3
10
3
s时,点D恰好落在BC边上.
分析:设当运动t秒时,线段PQ按逆时针方向旋转60°得线段QD此时点D恰好落在BC边上,则BP=t,CQ=2t,根据旋转的性质得到QP=QD,∠PQD=60°,则∠AQP+∠CQD=120°,
根据等边三角形的性质可得到∠A=60°,∠C=60°,则∠AQP+∠APQ=120°,得到∠APQ=∠CQD,易证得△APQ≌△CQD,则有AP=CQ,得到t+2t=10,解方程即可.
解答:解:设当运动t秒时,线段PQ按逆时针方向旋转60°得线段QD,此时点D恰好落在BC边上,则BP=t,CQ=2t,
如图,
∴QP=QD,∠PQD=60°,
∴∠AQP+∠CQD=120°,
又∵△ABC为等边三角形,
∴∠A=60°,∠C=60°,
∴∠AQP+∠APQ=120°,
∴∠APQ=∠CQD,
∴△APQ≌△CQD,
∴AP=CQ,
∴BP+CQ=AB,
∴t+2t=10,
∴t=
10
3
(s).
故答案为
10
3
点评:本题考查了等边三角形的性质:等边三角形的三边都相等,三个角都为60°.也考查了旋转的性质以及三角形全等的判定与性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网