题目内容

【题目】用适当的方法解下列方程:
(1)2x2﹣8x=0.
(2)x2﹣3x﹣4=0.
求出抛物线的开口方向、对称轴、顶点坐标.
(3)y= x2﹣x+3(公式法).

【答案】
(1)解:原方程可化为x2﹣4x=0,

因式分解可得x(x﹣4)=0,

∴x=0或x﹣4=0,

∴x1=0,x2=4


(2)解:因式分解可得(x﹣4)(x+1)=0,

∴x﹣4=0或x+1=0,

∴x1=4,x2=﹣1


(3)解:在y= x2﹣x+3中,

∵a= >0,

∴抛物线开口向上,

∵﹣ =﹣ =1, = =

∴抛物线对称轴为x=1,顶点坐标为(1,


【解析】(1)利用因式分解法求解即可;(2)利用因式分解法求解即可;(3)利用顶点坐标公式求解.
【考点精析】通过灵活运用因式分解法和二次函数的性质,掌握已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网