题目内容
【题目】用适当的方法解下列方程:
(1)2x2﹣8x=0.
(2)x2﹣3x﹣4=0.
求出抛物线的开口方向、对称轴、顶点坐标.
(3)y= x2﹣x+3(公式法).
【答案】
(1)解:原方程可化为x2﹣4x=0,
因式分解可得x(x﹣4)=0,
∴x=0或x﹣4=0,
∴x1=0,x2=4
(2)解:因式分解可得(x﹣4)(x+1)=0,
∴x﹣4=0或x+1=0,
∴x1=4,x2=﹣1
(3)解:在y= x2﹣x+3中,
∵a= >0,
∴抛物线开口向上,
∵﹣ =﹣ =1, = = ,
∴抛物线对称轴为x=1,顶点坐标为(1, )
【解析】(1)利用因式分解法求解即可;(2)利用因式分解法求解即可;(3)利用顶点坐标公式求解.
【考点精析】通过灵活运用因式分解法和二次函数的性质,掌握已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.
练习册系列答案
相关题目
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表:
x | … | ﹣3 | - | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中m= .
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;
(3)观察函数图象,写出2条函数的性质;
(4)进一步探究函数图象发现:
①函数图象与x轴有个交点,所对应的方程x2﹣2|x|=0有个实数根;
②方程x2﹣2|x|=2有个实数根.