题目内容
【题目】已知关于的一元二次方程.
(1)求证:该方程有两个实数根;
(2)若该方程的两个实数根、满足,求的值.
【答案】(1)该方程有两个的实数根;(2)m=±4.
【解析】试题分析:(1)求出△=b2﹣4ac的值,判定△≥0即可;
(2)根据根与系数的关系可得x1+x2=4,再结合条件2x1+x2=2可得x1=﹣2,然后再把x的值代入方程可得4+8﹣m2+4=0,再解即可.
试题解析:(1)证明:∵△=(﹣4)2﹣4×1×(﹣m2+4)=16+4m2﹣16=4m2≥0,∴该方程有两个实数根;
(2)∵方程的两个实数根x1、x2,∴x1+x2=4.∵2x1+x2=2,∴x1+4=2,x1=﹣2,把x1=﹣2代入x2﹣4x﹣m2+4=0得:4+8﹣m2+4=0,m=±4.
练习册系列答案
相关题目