题目内容

【题目】如图,ABC是一块直角三角板,且C=90°,A=30°,现将圆心为点O的圆形纸片放置在三角板内部.

(1)如图,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)

(2)如图,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.

【答案】(1)作图见解析;(2)

【解析】

试题分析:(1)作ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;

(2)添加如图所示辅助线,圆心O的运动路径长为,先求出ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出OO1O2=60°=ABC、O1OO2=90°,从而知OO1O2∽△CBA,利用相似三角形的性质即可得出答案.

试题解析:(1)如图所示,射线OC即为所求;

(2)如图2,圆心O的运动路径长为,过点O1作O1DBC、O1FAC、O1GAB,垂足分别为点D、F、G,过点O作OEBC,垂足为点E,连接O2B,过点O2作O2HAB,O2IAC,垂足分别为点H、I,在RtABC中,ACB=90°、A=30°,AC===,AB=2BC=18,ABC=60°,CABC=9++18=27+O1DBC、O1GAB,D、G为切点,BD=BG,在RtO1BD和RtO1BG中,BD=BG,O1B=O1B∴△O1BD≌△O1BG(HL),∴∠O1BG=O1BD=30°,在RtO1BD中,O1DB=90°,O1BD=30°,BD= ==OO1=9﹣2﹣=7﹣O1D=OE=2,O1DBC,OEBC,O1DOE,且O1D=OE,四边形OEDO1为平行四边形,∵∠OED=90°,四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,四边形OECF为正方形,∵∠O1GH=CDO1=90°,ABC=60°,∴∠GO1D=120°,又∵∠FO1D=O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=ABC,同理,O1OO2=90°,∴△OO1O2∽△CBA,,即 =,即圆心O运动的路径长为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网