题目内容
【题目】如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.
(1)求证:AM是⊙O的切线;
(2)若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).
【答案】(1)见解析;(2)
【解析】
(1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;
(2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.
(1)证明:∵∠B=60°,OB=OC,
∴△BOC是等边三角形,
∴∠1=∠3=60°,
∵OC平分∠AOB,
∴∠1=∠2,
∴∠2=∠3,
∴OA∥BD,
∵∠BDM=90°,
∴∠OAM=90°,
又OA为⊙O的半径,
∴AM是⊙O的切线
(2)解:连接AC,
∵∠3=60°,OA=OC,
∴△AOC是等边三角形,
∴∠OAC=60°,
∴∠CAD=30°,
∵OC=AC=4,
∴CD=2,
∴AD=2 ,
∴S阴影=S梯形OADC﹣S扇形OAC= ×(4+2)×2﹣.
练习册系列答案
相关题目