题目内容
【题目】如图,在四边形ABCD中,BA=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:点A与C关于直线BD对称.
(2)若∠ADC=90°,求证四边形MPND为正方形.
【答案】见解析
【解析】
(1)首先根据角平分线的定义求出∠ABD=∠CBD,然后在△ABD和△CBD中,根据SAS证明两个三角形全等,进而得到∠ADB=∠CDB,AD=CD,根据等腰三角形的性质可得BD垂直平分AC,进而可得点A与C关于直线BD对称;
(2)首先证明四边形PMDN是矩形,再根据角平分线上的点到角两边的距离相等可得PM=PN,进而可得四边形MPND为正方形.
证明:(1)连接AC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中
,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,DA=DC,
∴BD垂直平分AC,
∴点A与C关于直线BD对称;
(2)∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°,
∵∠ADC=90°,
∴四边形PMDN是矩形,
∵∠ADB=∠CDB,
∴BD平分∠ADC,
∵PM⊥AD,PN⊥CD,
∴PM=PN,
∴四边形MPND为正方形
【题目】某校准备在国庆节期间组织学生到泰山进行研学旅行,已知老师与学生一共25人参加此次研学旅行,购买门票共花费1700元,门票费用如表格所示,求参加研学旅行的老师和学生各有多少人?设老师有x人,学生有y人,则可列方程组为( )
景点 | 票价 | 开放时间 |
泰山门票 | 旺季:125元/人 淡季:100元/人 | 全天 |
说明:(1)旺季时间(2月~11月),淡季时间(12月-次年1月); (2)老年人(60岁~70岁)、学生、儿童(1.2米~1.4米)享受5折优惠; (3)教师、省部级劳模、英模、道德模范享受8折优惠; (4)现役军人、伤残军人、70岁以上老年人、残疾人,凭本人有效证件免费进山; (5)享受优惠的游客请出示本人有效证件。 |
A. B. C. D.
【题目】观察理解,并解决问题.
问题情境:如图所示,用一些相同的小正方形,拼在一起,排成如下的一些大正方形:
问题解决:(1)完成下表:
图序号 | 1 | 2 | 3 | 4 | … | |
每一行小正方形的个数 | 1 | 2 | 3 | ______ | … | ______ |
阴影小正方形的个数 | 1 | 3 | 5 | ______ | … | ______ |
(2)根据图形规律推测:______(用含的代数式表示)
(3)像(1),(2)这样,根据某类事物的部分对象具有的某种性质,推出这类事物的所有对象具有的这种性质的推理,叫做归纳推理.对于科学的发现,归纳推理是十分有用的,通过观察、实验,对有限个对象的性质作归纳整理,提出对某类事物带有规律性的猜测,是科学研究的基本方法.请观察下列等式的规律:第一个等式:;第二个等式:;第三个等式:;…猜想并直接写出第个等式.(用含的代数式表示)