题目内容
【题目】八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB边上任意一动点,点D在CB的延长线上,且满足AE=BD.
(1)如图①,当点E为AB的中点时,DE= ;
(2)如图②,点E在运动过程中,DE与EC满足什么数量关系?请说明理由;
(3)如图③,F是AC的中点,连接EF.在AB边上是否存在点E,使得DE+EF值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)
【答案】(1)2;(2)DE=CE,理由见解析;(3)这个最小值为2;
【解析】
(1)如图①,过点E作EH⊥BC于H,由等边三角形的性质可得BE=DB=AE=2,由直角三角形的性质可求BH=1,EH,由勾股定理可求解;
(2)如图②,过E作EF∥BC交AC于F,可证△AEF是等边三角形,AE=EF=AF=BD,由“SAS”可证△DBE≌△EFC,可得DE=CE;
(3)如图③,将△ABC沿AB翻折得到△ABC',连接C'F交AB于点E',连接CE',DE',过点F作FH⊥AC'于点H,由“SAS”可证△ACE'≌△AC'E',可得C'E'=CE',可得当点C',点E',点F三点共线时,DE+EF的值最小,由勾股定理可求最小值.
(1)如图①,过点E作EH⊥BC于H,
∵△ABC为边长为4的等边三角形,点E是AB的中点,
∴AE=BE=2=DB,∠ABC=60°,且EH⊥BC,
∴∠BEH=30°,
∴BH=1,EHBH,
∴DH=DB+BH=2+1=3,
∴DE.
故答案为:;
(2)DE=CE.理由如下:
如图②,过E作EF∥BC交AC于F.
∵△ABC是等边三角形,
∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.
∵EF∥BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,
∴∠AEF=∠AFE=∠A=60°,
∴△AEF是等边三角形,
∴AE=EF=AF,
∴AB﹣AE=AC﹣AF,
∴BE=CF.
∵∠ABC=∠ACB=∠AFE=60°,
∴∠DBE=∠EFC=120°,且AE=EF=DB,BE=CF,
∴△DBE≌△EFC(SAS),
∴DE=CE,
(3)如图③,将△ABC沿AB翻折得到△ABC',连接C'F交AB于点E',连接CE',DE',过点F作FH⊥AC'于点H.
∵将△ABC沿AB翻折得到△ABC',
∴AC=AC'=BC=BC'=4,∠BAC=∠BAC'=60°,且AE'=AE',
∴△ACE'≌△AC'E'(SAS),
∴C'E'=CE',
由(2)可知:DE'=CE',
∴C'E'=CE'=DE'.
∵DE+EF=C'E+EF=C'E'+EF,
∴当点C',点E',点F三点共线时,DE+EF的值最小.
∵F是AC的中点,
∴AF=CF=2,且HF⊥AC',∠FAH=180°﹣∠CAB﹣∠C'AB=60°,
∴AH=1,HFAH,
∴C'H=4+1=5,
∴C'F,
∴DE+EF的最小值为.