题目内容
【题目】把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.
【答案】12.
【解析】
设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.
解:设小长方形卡片的长为2m,则宽为m,
依题意,得:2m+2m=4,
解得:m=1,
∴2m=2.
再设盒子底部长方形的另一边长为x,
依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,
整理,得:10x=12+6x,
解得:x=3,
∴盒子底部长方形的面积=4×3=12.
故答案为:12.
练习册系列答案
相关题目
【题目】股民李金上星期六买进某公司的股票,每股元,下表为本周内该股票的涨跌情况:
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
每股涨跌(与前一天相比) |
星期三收盘时,每股是________元;本周内最高价是每股________元, 最低价是每股______元.