题目内容
【题目】甲、乙两车间同时从A地出发前往B地,沿着相同的路线匀速驶向B地,甲车中途由于某种原因休息了1小时,然后按原速继续前往B地,两车离A地的距离y(km)与行驶的时间x(h)之间的函数关系如图所示:
(1)A、B两地的距离是__________km;
(2)求甲车休息后离A地的距离y(km)与x(h)之间的函数关系;
(3)请直接写出甲、乙两车何时相聚15km。
【答案】(1)180;(2);(3)甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km
【解析】
(1)根据图象解答即可;(2) 根据函数图象中的数据可以求得甲车再次行驶过程中y与x之间的函数关系式;(3) 根据题意,利用分类讨论的数学思想可以求得x的值.
解:
(1)观察图象可得:A、B两地的距离是180km;
(2)由题意得,甲车的平均速度为:180÷(3-1)=90
所以当x=1时,y=90
当x=2时,y=90
当2≤x≤3时,设(k≠0)
点(2,90),(3,180)在直线上
因此有
解得:
∴
∴甲车休息后离A地的距离为y(km)与x(h)之间的函数关系为:
(3) 设乙车行驶过程中y与x之间的函数关系式是y=ax,
180=3a,得a=60,
∴乙车行驶过程中y与x之间的函数关系式是y=60x,
∴60x=90,得x=1.5,即两车1.5小时相遇,
当0≤x≤1.5时,甲车行驶过程中y与x之间的函数关系式是y=90x,90=x,
∴90x-60x=15,得x=,
90-60x=15时,x=1.25,
当1.5≤x≤3时,甲车行驶过程中y与x之间的函数关系式是y=9x-90,
90=x,
∴60x-90=1.5,得x=1.75;
60x-(90x-90)=15,得x=2.5
由上可得,甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km。
【题目】为了满足学生的物质需求,我市某中学到红旗超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:
甲 | 乙 | |
进价(元/袋) | ||
售价(元/袋) | 20 | 13 |
已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
(1)求的值;
(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于5200元,且不超5280元,问该红旗超市有几种进货方案?
(3)在(2)的条件下,该红旗超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每袋优惠元出售,乙种袋装食品价格不变.那么该红旗超市要获得最大利润应如何进货?
【题目】生态公园计划在园内的坡地上造一片有、两种树的混合林,需要购买这两种树苗2000棵,种植、两种树苗的相关信息如下表:
品名 | 单价(元/棵) | 栽树劳务费(元/棵) | 成活率 |
25 | 3 | ||
30 | 4 |
设购买种树苗棵,解答下列问题:
(1)购买的种树苗的数量为_______棵(含的代数式表示);
(2)请用含的代数式表示造这片林的总费用;
(3)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?