题目内容
【题目】填空,将本题补充完整.
如图,已知EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
解:∵EF∥AD(已知)
∴∠2= ( )
又∵∠1=∠2(已知)
∴∠1= (等量代换)
∴AB∥GD( )
∴∠BAC+ =180°( )
∵∠BAC=70°(已知)
∴∠AGD= °
【答案】∠3,∠3,DG,∠AGD,(两直线平行,同旁内角互补),110°
【解析】试题分析:根据平行线的性质和已知求出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质推出∠BAC+∠DGA=180°即可.
解:∵EF∥AD(已知),
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠2,
∴∠1=∠3(等量代换),
∴AB∥DG(内错角相等,两直线平行),
∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),
∵∠BAC=70°,
∴∠AGD=110°,
故答案为:∠3,∠3,DG,∠AGD,(两直线平行,同旁内角互补),110°.
练习册系列答案
相关题目