题目内容
【题目】如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD//CO.
(1)求证:△ADB∽△OBC;
(2)若AB=2,BC=,求AD的长.(结果保留根号)
【答案】(1)详见解析;(2)
【解析】
(1)根据AB为圆O的直径,根据圆周角定理得到∠D为90°,又BC为圆O的切线,根据切线性质得到∠CBO=90°,进而得到这两个角相等,又AD∥CO,根据两直线平行,得到一对同位角相等,从而利用两角对应相等的两三角形相似即可得证;
(2)根据勾股定理求得OC=,由(1)得到的相似三角形,根据相似三角形的对应边成比例得出,即AD=,求出AD的长.
(1)证明:∵AB是⊙O的直径,
∴∠ADB=∠90°,
∵BC是⊙O的切线,
∴∠OBC=∠90°,
∵AD∥CO,
∴∠A=∠COB,
在△ABD和△OBC中
∵∠ADB=∠OBC,∠A=∠COB,
∴△ABD∽△OCB;
(2)由(1)知,△ABD∽△OCB,
∴,即AD=,
∵AB=2,BC=,
∴OB=1,
∴OC==,
∴AD==.
练习册系列答案
相关题目