题目内容
【题目】如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
【答案】60°
【解析】
根据∠AOC:∠COD:∠BOD=2:3:4分别设∠AOC=2x,∠COD=3x,∠BOD=4x,根据这三个角之和等于180°,求得三个角的度数,然后根据角平分线的性质即可求得∠EOF的大小.
设∠AOC=2x,∠COD=3x,∠BOD=4x
∵∠AOC+∠COD+∠BOD=∠AOB=180°
∴2x+3x+4x=180°
∴x=20°
∴∠AOC=40°∠COD=60°∠BOD=80°
∵OE,OF平分∠AOC,∠BOD
∴∠EOC=20°,∠DOF=40°
∴∠EOF=120°
又∵OG平分∠EOF
∴∠EOG=∠GOF=60°
∴∠GOF=60°.
练习册系列答案
相关题目