题目内容
【题目】甲、乙两人利用不同的交通工具,沿同一路线分别从A、B两地同时出发匀速前往C地(B在A、C两地的途中).设甲、乙两车距A地的路程分别为y甲、y乙(千米),行驶的时间为x(小时),y甲、y乙与x之间的函数图象如图所示.
(1)直接写出y甲、y乙与x之间的函数表达式;
(2)如图,过点(1,0)作x轴的垂线,分别交y甲、y乙的图象于点M,N.求线段MN的长,并解释线段MN的实际意义;
(3)在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,求x的取值范围.
【答案】(1)y甲=60x;y乙=40x+60;(2)表示甲、乙两人出发1小时后,他们相距40千米;(3)在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,x的取值范围是1.5<x<4.5或5.25<x≤6.
【解析】试题分析:(1)利用待定系数法即可求出y甲、y乙与x之间的函数表达式;
(2)把x=1代入(1)中的函数解析式,分别求出对应的y甲、y乙的值,则线段MN的长=y乙-y甲,进而解释线段MN的实际意义;
(3)分三种情况进行讨论:①0<x≤3;②3<x≤5;③5<x≤6.分别根据甲、乙两人距A地的路程差小于30千米列出不等式,解不等式即可.
试题解析:
(1)设y甲=kx,
把(3,180)代入,得3k=180,解得k=60,
则y甲=60x;
设y乙=mx+n,
把(0,60),(3,180)代入,
得,解得,
则y乙=40x+60;
(2)当x=1时,
y甲=60x=60,y乙=40x+60=100,
则MN=100﹣60=40(千米),
线段MN的实际意义:表示甲、乙两人出发1小时后,他们相距40千米;
(3)分三种情况:
①当0<x≤3时,
(40x+60)﹣60x<30,解得x>1.5;
②当3<x≤5时,
60x﹣(40x+60)<30,解得x<4.5;
③当5<x≤6时,
300﹣(40x+60)<30,解得x>5.25.
综上所述,在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,x的取值范围是1.5<x<4.5或5.25<x≤6.