题目内容
【题目】如图,在中,,点为的中点,,绕点旋转,、分别与边、交于、两点.下列结论:①;②;③;④;⑤与可能互相平分.
其中,正确的结论是___________________(填序号)
【答案】①②⑤
【解析】
先由ASA证明△AED≌△CFD,得出AE=CF,再由勾股定理即可得出BE+CF=AB=BC,从而判断①;设AB=AC=a,AE=CF=x,先由三角形的面积公式得出S△AEF=-(x-a)2+a2,S△ABC=×a2=a2,再根据二次函数的性质即可判断②;
由勾股定理得到EF的表达式,利用二次函数性质求得EF最小值为a,而AD=a,所以EF≥AD,从而④错误;先得出S四边形AEDF=S△ADC=AD,再由EF≥AD得到ADEF≥AD2,∴ADEF>S四边形AEDF,所以③错误;如果四边形AEDF为平行四边形,则AD与EF互相平分,此时DF∥AB,DE∥AC,又D为BC中点,所以当E、F分别为AB、AC的中点时,AD与EF互相平分,从而判断⑤.
解:∵Rt△ABC中,AB=AC,点D为BC中点,
∴∠C=∠BAD=45°,AD=BD=CD,
∵∠MDN=90°,
∴∠ADE+∠ADF=∠ADF+∠CDF=90°,
∴∠ADE=∠CDF.
在△AED与△CFD中, ,
∴△AED≌△CFD(ASA),
∴AE=CF,
在Rt△ABD中,BE+CF=BE+AE=AB=
BD=BC.
故①正确;
设AB=AC=a,AE=CF=x,则AF=a-x.
∵S△AEF=AEAF=x(a-x)=-(x-a)2+a2,
∴当x=a时,S△AEF有最大值a2,
又∵S△ABC=×a2=a2,
∴S△AEF≤S△ABC.
故②正确;
EF2=AE2+AF2=x2+(a-x)2=2(x-a)2+a2,
∴当x=a时,EF2取得最小值a2,
∴EF≥a(等号当且仅当x=a时成立),
而AD=a,
∴EF≥AD.
故④错误;
由①的证明知△AED≌△CFD,
∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,
∵EF≥AD,
∴ADEF≥AD2,
∴ADEF>S四边形AEDF
故③错误;
当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.
故⑤正确.
综上所述,正确的有:①②⑤.
故答案为:①②⑤.