题目内容
在△ABC中.
(1)若∠A=60°,AB、AC边上的高CE、BD交于点O.求∠BOC的度数.(如图)
(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+∠BOC=
(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+∠BOC=
(1)若∠A=60°,AB、AC边上的高CE、BD交于点O.求∠BOC的度数.(如图)
(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+∠BOC=
180
180
°,再用你已学过的数学知识加以说明.(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+∠BOC=
180
180
°.分析:(1)由垂直的定义得到∠ADB=∠BEC=90°,再根据三角形内角和定理得∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,然后根据三角形的外角性质有∠BOC=∠EBD+∠BEO,计算即可得到∠BOC的度数.
(2)首先根据题意画出图形,再根据三角形内角和定证明出∠O=∠BAD,进而可得∠BAC+∠BOC=180°;
(3)根据(1)(2)可直接得到结论.
(2)首先根据题意画出图形,再根据三角形内角和定证明出∠O=∠BAD,进而可得∠BAC+∠BOC=180°;
(3)根据(1)(2)可直接得到结论.
解答:解:(1)∵BD、CE分别是边AC,AB上的高,
∴∠ADB=∠BEC=90°,
又∵∠BAC=60°,
∴∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,
∴∠BOC=∠EBD+∠BEO=90°+30°=120°;
(2)如图所示:
∠BAC+∠BOC=180°;
理由如下:∵BD、CE分别是边AC,AB上的高,
∴∠ADB=∠BEC=90°,
∵∠ABD=180°-∠ADB-∠BAD=180°-90°-∠BAD=90°-∠BAD,
∠O=180°-∠BEO-∠DBA=90°-∠DBA=90°-(90°-∠BAD)=∠BAD,
∵∠BAC=180°-∠DAB,
∴∠BAC=180°-∠O,
∴∠BAC+∠O=180°;
(3)由(1)(2)可得∠BAC+∠BOC=180°.
∴∠ADB=∠BEC=90°,
又∵∠BAC=60°,
∴∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,
∴∠BOC=∠EBD+∠BEO=90°+30°=120°;
(2)如图所示:
∠BAC+∠BOC=180°;
理由如下:∵BD、CE分别是边AC,AB上的高,
∴∠ADB=∠BEC=90°,
∵∠ABD=180°-∠ADB-∠BAD=180°-90°-∠BAD=90°-∠BAD,
∠O=180°-∠BEO-∠DBA=90°-∠DBA=90°-(90°-∠BAD)=∠BAD,
∵∠BAC=180°-∠DAB,
∴∠BAC=180°-∠O,
∴∠BAC+∠O=180°;
(3)由(1)(2)可得∠BAC+∠BOC=180°.
点评:此题主要考查了三角形内角和定理,关键是掌握三角形内角和为180°,根据图形掌握角之间的关系.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
2 |
6 |
2 |
A、
| ||
B、
| ||
C、2 | ||
D、以上都不对 |