题目内容
【题目】如图所示,以正方形的顶点为圆心的弧恰好与对角线相切,以顶点为圆心,正方形的边长为半径的弧,已知正方形的边长为,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
【解析】
连接AC交BD于O,由正方形的性质得出OA=OB=BD,AC⊥BD,∠BAD=90°,AB=AD=2,∠BAO=∠ABF=45°,由勾股定理求出BD,得出OA=OB=,求出△AOB的面积、扇形AOE的面积、扇形ABF的面积,即可得出图中阴影部分的面积.
连接AC交BD于O,如图所示:
∵四边形ABCD是正方形,
∴OA=OB=BD,AC⊥BD,∠BAD=90°,AB=AD=2,∠BAO=∠ABF=45°,
∴BD==,
∴OA=OB=,
∴△AOB的面积=××=1,
∵以正方形ABCD的顶点A为圆心的弧恰好与对角线BD相切,AC⊥BD,
∴O为切点,
∵扇形AOE的面积=,扇形ABF的面积=,
∴图中阴影部分的面积=.
故选D.
练习册系列答案
相关题目