题目内容

【题目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.

【答案】
(1)证明:∵PQ⊥AQ,

∴∠AQP=90°=∠ABC,

在△APQ与△ABC中,

∵∠AQP=90°=∠ABC,∠A=∠A,

∴△AQP∽△ABC


(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.

∵∠QPB为钝角,

∴当△PQB为等腰三角形时,

(i)当点P在线段AB上时,如题图1所示.

∵∠QPB为钝角,

∴当△PQB为等腰三角形时,只可能是PB=PQ,

由(1)可知,△AQP∽△ABC,

,即 ,解得:PB=

∴AP=AB﹣PB=3﹣ =

(ii)当点P在线段AB的延长线上时,如题图2所示.

∵∠QBP为钝角,

∴当△PQB为等腰三角形时,只可能是PB=BQ.

∵BP=BQ,∴∠BQP=∠P,

∵∠BQP+∠AQB=90°,∠A+∠P=90°,

∴∠AQB=∠A,

∴BQ=AB,

∴AB=BP,点B为线段AP中点,

∴AP=2AB=2×3=6.

综上所述,当△PQB为等腰三角形时,AP的长为 或6


【解析】(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△AQP∽△ABC;(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.(i)当点P在线段AB上时,如题图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;(ii)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.
【考点精析】本题主要考查了等腰三角形的性质和直角三角形斜边上的中线的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);直角三角形斜边上的中线等于斜边的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网