题目内容
【题目】如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.
(1)求证:AD=BC;
(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.
【答案】
(1)
证明:过点B作BM∥AC交DC的延长线于点M,如图1,
∵AB∥CD
∴四边形ABMC为平行四边形,
∴AC=BM=BD,∠BDC=∠M=∠ACD,
在△ACD和△BDC中,
,
∴△ACD≌△BDC(SAS),
∴AD=BC;
(2)
证明:连接EH,HF,FG,GE,如图2,
∵E,F,G,H分别是AB,CD,AC,BD的中点,
∴HE∥AD,且HE= AD,FG∥AD,且FG= ,
∴四边形HFGE为平行四边形,
由(1)知,AD=BC,
∴HE=EG,
∴HFGE为菱形,
∴EF与GH互相垂直平分.
【解析】(1)由平行四边形的性质易得AC=BM=BD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性质得出结论;
(2)连接EH,HF,FG,GE,E,F,G,H分别是AB,CD,AC,BD的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得HFGE为菱形,易得EF与GH互相垂直平分.
练习册系列答案
相关题目