题目内容
| 2 |
分析:过O作OF⊥BC,过A作AM⊥OF,根据正方形的性质得出∠AOB=90°,OA=OB,求出∠BOF=∠OAM,根据AAS证△AOM≌△BOF,推出AM=OF,OM=FB,求出四边形ACFM为矩形,推出AM=CF,AC=MF=5,得出等腰三角形三角形OCF,根据勾股定理求出CF=OF=6,求出BF,即可求出答案.
解答:解:
过O作OF⊥BC于F,过A作AM⊥OF于M,
∵∠ACB=90°,
∴∠AMO=∠OFB=90°,∠ACB=∠CFM=∠AMF=90°,
∴四边形ACFM是矩形,
∴AM=CF,AC=MF=5,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∵∠AMO=90°,
∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△OBF中
∴△AOM≌△OBF(AAS),
∴AM=OF,OM=FB,
∴OF=CF,
∵∠CFO=90°,
∴△CFO是等腰直角三角形,
∵OC=6
,由勾股定理得:CF=OF=6,
∴BF=OM=OF-FM=6-5=1,
∴BC=6+1=7.
过O作OF⊥BC于F,过A作AM⊥OF于M,
∵∠ACB=90°,
∴∠AMO=∠OFB=90°,∠ACB=∠CFM=∠AMF=90°,
∴四边形ACFM是矩形,
∴AM=CF,AC=MF=5,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∵∠AMO=90°,
∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△OBF中
|
∴△AOM≌△OBF(AAS),
∴AM=OF,OM=FB,
∴OF=CF,
∵∠CFO=90°,
∴△CFO是等腰直角三角形,
∵OC=6
| 2 |
∴BF=OM=OF-FM=6-5=1,
∴BC=6+1=7.
点评:本题考查了等腰直角三角形,勾股定理,正方形的性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,有一定的难度.
练习册系列答案
相关题目