题目内容
【题目】如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论: ①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3
其中正确的有( )
A.1
B.2
C.3
D.4
【答案】B
【解析】解:抛物线与x轴有两个交点, ∴△>0,
∴b2﹣4ac>0,故①错误;
由于对称轴为x=﹣1,
∴x=﹣3与x=1关于x=﹣1对称,
∵x=﹣3时,y<0,
∴x=1时,y=a+b+c<0,故②错误;
∵对称轴为x=﹣ =﹣1,
∴2a﹣b=0,故③正确;
∵顶点为B(﹣1,3),
∴y=a﹣b+c=3,
∴y=a﹣2a+c=3,
即c﹣a=3,故④正确;
故选B.
【考点精析】掌握二次函数图象以及系数a、b、c的关系和抛物线与坐标轴的交点是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c);一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成绩 | 中位数 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空①;②;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为 ,你认为推荐谁参加比赛更合适,请说明理由.