题目内容
【题目】慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)
(1)求小亮与塔底中心的距离BD;(用含a的式子表示)
(2)若小亮与小琴相距52米,求慈氏塔的高度AB.
【答案】(1)小亮与塔底中心的距离BD(1.9a﹣0.2)米;(2)慈氏塔的高度AB为36.1米.
【解析】
(1)由题意得,四边形CDBG、HBFE为矩形,求得GH=0.2,在Rt△AHE中,利用∠AEH的正切求得AH≈1.9a,从而得AG=1.9a﹣0.2,在Rt△ACG中,根据等腰直角三角形的性质求得CG=AG=1.9a﹣0.2,由此即可求得答案;
(2)由题意可得关于a的方程,解方程求得a的值即可得答案.
(1)由题意得,四边形CDBG、HBFE为矩形,
∴GB=CD=1.7,HB=EF=1.5,
∴GH=0.2,
在Rt△AHE中,tan∠AEH=,
则AH=HEtan∠AEH≈1.9a,
∴AG=AH﹣GH=1.9a﹣0.2,
在Rt△ACG中,∠ACG=45°,
∴CG=AG=1.9a﹣0.2,
∴BD=1.9a﹣0.2,
答:小亮与塔底中心的距离BD(1.9a﹣0.2)米;
(2)由题意得,1.9a﹣0.2+a=52,
解得,a=18,
则AG=1.9a﹣0.2=34.4,
∴AB=AG+GB=36.1,
答:慈氏塔的高度AB为36.1米.
【题目】某公司经销的一种产品每件成本为40元,要求在90天内完成销售任务.已知该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天) | 1≤x<50 | 50≤x≤90 |
x+50 | 90 |
任务完成后,统计发现销售员小王90天内日销售量p(件)与时间(第x天)满足一次函数关系p=﹣2x+200.设小王第x天销售利润为W元.
(1)直接写出W与x之间的函数关系式,井注明自变量x的取值范围;
(2)求小生第几天的销售量最大?最大利润是多少?
(3)任务完成后,统计发现平均每个销售员每天销售利润为4800公司制定如下奖励制度:如果一个销售员某天的销售利润超过该平均值,则该销售员当天可获得200元奖金.请计算小王一共可获得多少元奖金?