题目内容
【题目】二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,则下列四个结论:①c>0; ②2a+b=0; ③b2-4ac>0; ④a-b+c>0;正确的是_____.
【答案】①②③
【解析】
由抛物线开口方向得到a<0,由抛物线与y轴交点位置得到c>0,则可对①进行判断;利用抛物线的对称轴方程可对②进行判断;由抛物线与x轴的交点个数可对③进行判断;由于x=-1时函数值小于0,则可对④进行判断.
解:∵抛物线开口向下,
∴a<0,
∵抛物线与y轴交点位于y轴正半轴,
∴c>0,所以①正确;
∵抛物线的对称轴为直线,
∴b=-2a,即2a+b=0,所以②正确;
∵抛物线与x轴有两个不同的交点,
∴b2-4ac>0,所以③正确;
∵x=-1时,y<0,
∴a-b+c<0,所以④错误.
故答案为:①②③.
练习册系列答案
相关题目