题目内容
【题目】如图,排球运动员站在点O处练习发球,将球从D点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网
B.球会过球网但不会出界
C.球会过球网并会出界
D.无法确定
【答案】C
【解析】解:(1)∵球与O点的水平距离为6m时,达到最高2.6m,
∴抛物线为y=a(x﹣6)2+2.6过点,
∵抛物线y=a(x﹣6)2+2.6过点(0,2),
∴2=a(0﹣6)2+2.6,
解得:a=﹣ ,
故y与x的关系式为:y=﹣ (x﹣6)2+2.6,
当x=9时,y=﹣ (x﹣6)2+2.6=2.45>2.43,
所以球能过球网;
当y=0时,﹣ (x﹣6)2+2.6=0,
解得:x1=6+2 >18,x2=6﹣2 (舍去)
故会出界.
故答案为:C.
先根据题意列出y与x的函数解析式,再将x=9代入函数解析式求出y的值,可得出球能过球网,再根据y=0求出对应的自变量的值,再与18 比较大小,即可得出答案。
练习册系列答案
相关题目