题目内容
【题目】如图,某同学在大楼AD的观光电梯中的E点测得大楼BC楼底C点的俯角为45°,此时该同学距地面高度AE为20米,电梯再上升5米到达D点,此时测得大楼BC楼顶B点的仰角为37°,求大楼的高度BC.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
【答案】解:过点E、D分别作BC的垂线,交BC于点F、G.
在Rt△EFC中,因为FC=AE=20,∠FEC=45°
所以EF=20 ………2分
在Rt△DBG中,DG=EF=20,∠BDG=37°
因为tan∠BDG=≈0.75 ………4分
所以BG≈DG×0.75=20×0.75=15………5分
而GF=DE=5所以BC=BG+GF+FC=15+5+20=40
答:大楼BC的高度是40米. ………6分
【解析】
首先过点E、D分别作BC的垂线,交BC于点F、G,得两个直角三角形△EFC和△BDG,由已知大楼BC楼底C点的俯角为45°得出EF=FC=AE=20,DG=EF=20,再由直角三角形BDG,可求出BG,GF=DE=5,CO从而求出大楼的高度BC.
过点E、D分别作BC的垂线,交BC于点F、G.
在Rt△EFC中,因为FC=AE=20,∠FEC=45°
所以EF=20
在Rt△DBG中,DG=EF=20,∠BDG=37°
因为tan∠BDG=≈0.75
所以BG≈DG×0.75=20×0.75=15
而GF=DE=5
所以BC=BG+GF+FC=15+5+20=40
答:大楼BC的高度是40米.
练习册系列答案
相关题目