题目内容
【题目】已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:_________;
(2)仔细观察,在图2中“8字形”的个数_________个;
(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系(直接写出结论即可)
【答案】
【1】∠A+∠D=∠C+∠B
【2】6 个
【3】解:∠DAP+∠D=∠P+∠DCP ①
∠PCB+∠B=∠PAB+∠P ②
∵∠DAB和∠BCD的平分线AP和CP相交于点P
∴∠DAP=∠PAB,∠DCP= ∠PCB
①+②得:
∠DAP+∠D+∠PCB+∠B =∠P+∠DCP+∠PAB+∠P
又∵∠D=50度,∠B=40度
∴50°+40°=2∠P
∴∠P=45°
【4】关系:2∠ P=∠D+∠B
【解析】【1】根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;
【1】根据“8字形”的定义,仔细观察图形即可得出“8字形”共有6个;
【1】先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义,得出∠DAP=∠PAB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B,进而求出∠P的度数.
练习册系列答案
相关题目