题目内容
【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)
①△CMP∽△BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2 ;
⑤当△ABP≌△ADN时,BP=4 ﹣4.
【答案】①②⑤
【解析】解:∵∠APB=∠APE,∠MPC=∠MPN,
∵∠CPN+∠NPB=180°,
∴2∠NPM+2∠APE=180°,
∴∠MPN+∠APE=90°,
∴∠APM=90°,
∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,
∴∠CPM=∠PAB,
∵四边形ABCD是正方形,
∴AB=CB=DC=AD=4,∠C=∠B=90°,
∴△CMP∽△BPA.故①正确,
设PB=x,则CP=4﹣x,
∵△CMP∽△BPA,
∴ = ,∴CM= x(4﹣x),∴S四边形AMCB= [4+ x(4﹣x)]×4=﹣ x2+2x+8=﹣ (x﹣2)2+10,
∴x=2时,四边形AMCB面积最大值为10,故②正确,
当PB=PC=PE=2时,设ND=NE=y,
在RT△PCN中,(y+2)2=(4﹣y)2+22解得y= ,
∴NE≠EP,故③错误,
作MG⊥AB于G,
∵AM= = ,
∴AG最小时AM最小,
∵AG=AB﹣BG=AB﹣CM=4﹣ x(4﹣x)= (x﹣1)2+3,
∴x=1时,AG最小值=3,
∴AM的最小值= =5,故④错误.
∵△ABP≌△ADN时,
∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,
∴∠KPA=∠KAP=22.5°
∵∠PKB=∠KPA+∠KAP=45°,
∴∠BPK=∠BKP=45°,
∴PB=BK=z,AK=PK= z,∴z+ z=4,∴z=4 ﹣4,∴PB=4 ﹣4故⑤正确.
故答案为①②⑤.
①正确,只要证明∠APM=90°即可解决问题.
②正确,设PB=x,构建二次函数,利用二次函数性质解决问题即可.
③错误,设ND=NE=y,在RT△PCN中,利用勾股定理求出y即可解决问题.
④错误,作MG⊥AB于G,因为AM= = ,所以AG最小时AM最小,构建二次函数,求得AG的最小值为3,AM的最小值为5.
⑤正确,在AB上取一点K使得AK=PK,设PB=z,列出方程即可解决问题.本题考查相似形综合题、正方形的性质、相似三角形的判定和性质、全等三角形的性质、勾股定理等知识,解题的关键是学会构建二次函数解决最值问题,学会添加常用辅助线,属于中考压轴题.
【题目】某房地产开发商 2010 年 6 月从银行贷款 3 亿元开发某楼盘,贷款 期限为两年,贷款年利率为 8%.该楼盘有 A、B 两种户型共计 500 套房,算 上土地成本、建筑成本及销售成本,A 户型房平均每平方米成本为 0.6 万元,
B 户型房平均每平方米成本为 0.7 万元,表是开发商原定的销控表:
销售面积(m2) | 销售价格(万元/m2) | |
A 户型 | 75 | 0.8 |
B 户型 | 100 | 1 |
(1)该楼盘两种户型房各有多少套?
(2)由于限购政策的实施,2011 年以来房地产市场萎靡不振,开发商又急于在两年贷款期限到之前把房卖完,2012 年 1 月实际开盘时将 A 户型房按原定销 售价打 9 折,B 户型房按原定销售价打 8.3 折出售,结果 2012 年 6 月前将两 种户型的房全部卖完,开发商在还完贷款及贷款利息之后,还获利多少万元? 实际销售额比原定销售额下降了百分之几?