题目内容

【题目】如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C.若点A′恰好落在BC的延长线上,则点B′到BA′的距离为

【答案】
【解析】解:作A′D⊥CB′于D,B′E⊥BC于E,如图,
∵△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C,
∴A′B′=A′C=AB=AC=5,B′C=BC=6,
∴CD=B′D= B′C=3,
在Rt△A′CD中,A′D= =4,
B′EA′C= A′DB′C,
∴B′E= =
即点B′到BA′的距离为
故答案为
作A′D⊥CB′于D,B′E⊥BC于E,如图,利用旋转的性质得A′B′=A′C=AB=AC=5,B′C=BC=6,再根据等腰三角形的性质得CD=B′D= B′C=3,则利用勾股定理得到A′D=4,然后利用面积法求B′E.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网