题目内容
【题目】在平面直角坐标系中,已知点,将绕坐标原点顺时针旋转至,则点的坐标是( )
A.B.C.D.
【答案】B
【解析】
过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可.
解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,
∵OA绕坐标原点O顺时针旋转90°至OA′,
∴OA=OA′,∠AOA′=90°,
∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,
∴∠OAB=∠A′OB′,
在△AOB和△OA′B′中,
∴△AOB≌△OA′B′(AAS),
∴OB′=AB=4,A′B′=OB=3,
∴点A′的坐标为(4,-3).
故选:B.
练习册系列答案
相关题目
【题目】小明将小球沿地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度()与它的飞行时间()满足二次函数关系,与的几组对应值如下表所示:
() | … | |||||
() | … |
(1)求关于的函数解析式(不要求写的取值范围)
(2)问:小球的飞行高度能否达到?请说明理由