题目内容
【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点.
(1)求这个二次函数y=x2+bx+c的解析式.
(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标.
(3)如果点P在运动过程中,能使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.
【答案】(1)y=x2﹣2x﹣3(2)(2)(,-)(3)P、C、B为顶点的三角形与△AOC相似,此时点P的坐标(1,﹣4)
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据菱形的对角线互相垂直平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得答案;
(3)分类讨论:①当∠PCB=90°,根据互相垂直的两条直线的一次项系数互为负倒数,可得BP的解析式,根据自变量与函数值的对应关系,可得P点坐标;根据勾股定理,可得BC,CP的长,根据两组对边对应成比例且夹角相等的两个三角形相似,可得答案;
②当∠BPC=90°时,根据相似三角形的性质,可得P点的坐标,根据两组对边对应成比例且夹角相等的两个三角形相似,可得答案.
(1)将B、C点代入函数解析式,得:,解得:,这个二次函数y=x2+bx+c的解析式为y=x2﹣2x﹣3;
(2)∵四边形POP′C为菱形,∴OC与PP′互相垂直平分,∴yP,即x2﹣2x﹣3,解得:x1,x2(舍),P();
(3)∵∠PBC<90°,∴分两种情况讨论:
①如图1,当∠PCB=90°时,过P作PH⊥y轴于点H,BC的解析式为y=x﹣3,CP的解析式为y=﹣x﹣3,设点P的坐标为(m,﹣3﹣m),将点P代入代入y═x2﹣2x﹣3中,解得:m1=0(舍),m2=1,即P(1,﹣4);
AO=1,OC=3,CB,CP,此时3,△AOC∽△PCB;
②如图2,当∠BPC=90°时,作PH⊥y轴于H,作BD⊥PH于D.
∵PC⊥PB,∴△PHC∽△BDP,∴.设点P的坐标为(m,m2﹣2m﹣3),则PH=m,HC=-(m2﹣2m﹣3)-(-3)=-m2+2m,BD=-(m2﹣2m﹣3),PD=3-m,∴,∴,解得:m或(舍去).当m时,m2﹣2m﹣3=.
∵△PHC∽△BDP,∴== 3,以P、C、B为顶点的三角形与△AOC不相似.
综上所述:P、C、B为顶点的三角形与△AOC相似,此时点P的坐标(1,﹣4).
【题目】某通信公司策划了两种上网的月收费方式:
收费方式 | 月使用费/元 | 包时上网时间/ | 超时费/(元/) |
30 | 25 | 0.05 | |
设每月上网时间为,方式的收费金额分别为(元),(元),如图是与之间函数关系的图象.(友情提示:若累计上网时间不超出包时上网时间,则只收月使用费;若累计上网时间超出包时上网时间,则对超出部分再加收超时费)
(1) , , ;
(2)求
(3)若每月上网时间为31小时,请直接写出选择哪种方式能节省上网费.