题目内容
【题目】如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.
(1)求反比例函数和一次函数的解析式;
(2)连接OB,求△AOB的面积.
【答案】(1)y=﹣,y=﹣x﹣1;(2)
【解析】
(1)过点A作AE⊥x轴于点E,通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可,再由点B在反比例函数图象上可求出点B的坐标,由点A、B的坐标利用待定系数法求出直线AB的解析式;
(2)令一次函数解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.
解:(1)过点作轴于点,
则.
在中,,,
,
,
点的坐标为.
点在反比例函数的图象上,
,解得:.
反比例函数解析式为.
点在反比例函数的图象上,
,解得:,
点的坐标为.
将点、点代入中得:,
解得:,
一次函数解析式为.
(2)令一次函数中,则,
解得:,即点的坐标为.
.
练习册系列答案
相关题目