题目内容
【题目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图1,猜想AE与BD的数量关系与位置关系,并加以证明.
(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.
【答案】(1)AE=BD,AE⊥BD;(2)△ACB≌△DCE;△EMC≌△BNC;△AON≌△DOM;△AOB≌△DOE
【解析】
(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD、AE⊥BD;
(2)根据条件即可判断图中的全等直角三角形;
解:(1)AE=BD,AE⊥BD.
理由如下:
∵△ACB和△DCE都是等腰直角三角形,
∠ACB=∠DCE=90°,
∴AC=BC,DC=EC,
∴∠ACB+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE
在△ACE与△BCD中,
∴△ACE≌△BCD(SAS)
∴AE=BD,∠BDC=∠AEC
又∵在△DOM与△CME中,∠DMA=∠CME
∴∠DOM=∠MCE=90°
∴AE⊥BD
(2) ∵AC=DC,
∴AC=CD=EC=CB,∠ACB=∠DCE
△ACB≌△DCE(SAS);
由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC
∴∠DOM=90°,
∵∠AEC=∠CAE=∠CBD,
∴△EMC≌△BNC(ASA),
∴CM=CN,
∴DM=AN,
△AON≌△DOM(AAS),
∵DE=AB,AO=DO,
∴△AOB≌△DOE(HL)
练习册系列答案
相关题目