题目内容
【题目】如图,AB是⊙O的直径,点C、D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA延长线与OC延长线于点E、F,连接BF.
(1)求证:BF是⊙O的切线;
(2)已知圆的半径为1,求EF的长.
【答案】
(1)证明:连结OD,如图,∵四边形AOCD是平行四边形,
而OA=OC,
∴四边形AOCD是菱形,
∴△OAD和△OCD都是等边三角形,
∴∠AOD=∠COD=60°,
∴∠FOB=60°,
∵EF为切线,
∴OD⊥EF,
∴∠FDO=90°,
在△FDO和△FBO中
,
∴△FDO≌△FBO,
∴∠ODF=∠OBF=90°,
∴OB⊥BF,
∴BF是⊙O的切线
(2)解:在Rt△OBF中,∵∠FOB=60°,
而tan∠FOB= ,
∴BF=1×tan60°= .
∵∠E=30°,
∴EF=2BF=2 .
【解析】(1)先证明四边形AOCD是菱形,从而得到∠AOD=∠COD=60°,再根据切线的性质得∠FDO=90°,接着证明△FDO≌△FBO得到∠ODF=∠OBF=90°,然后根据切线的判定定理即可得到结论;(2)在Rt△OBF中,利用60度的正切的定义求解.本题考查了切线的判断与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.有切线时,常常“遇到切点连圆心得半径”.
练习册系列答案
相关题目
【题目】甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:
甲 | 8 | 9 | 7 | 9 | 8 | 6 | 7 | 8 | 10 | 8 |
乙 | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | 7 | 10 |
且 =8,S乙2=1.8,根据上述信息完成下列问题:
(1)将甲运动员的折线统计图补充完整;
(2)乙运动员射击训练成绩的众数是 , 中位数是 .
(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.