题目内容
【题目】如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):
(1)填写下表:
正方形ABCD内点的个数 | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的个数 | 4 | 6 | … |
(2)原正方形能否被分割成2008个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.
【答案】(1)见解析;(2)见解析.
【解析】分析:(1)有1个点时,内部分割成4个三角形;
有2个点时,内部分割成4+2=6个三角形;
那么有3个点时,内部分割成4+2×2=8个三角形;
有4个点时,内部分割成4+2×3=10个三角形;
有n个点时,内部分割成个三角形;
(2)让求出的值.
详解:(1)填写下表:
(2)能.当2n+2=2008时,n=1003.即正方形内部有1003个点.
练习册系列答案
相关题目