题目内容
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.
(1)求直线AC解析式;
(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;
(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.
【答案】(1)y=﹣x+5;(2)点F(,);四边形AFDE的面积的最大值为;(3)点N(0,),点P的运动路径最短距离=2+.
【解析】
(1)先求出点A,点C坐标,用待定系数法可求解析式;
(2)先求出点D坐标,设点F(x,﹣x2+4x+5),则点E坐标为(x,﹣x+5),即可求EF=﹣x2+5x,可求四边形AFDE的面积,由二次函数的性质可求解;
(3)由动点P的运动路径=FM+MN+NC=GM+2+MH,则当点G,点M,点H三点共线时,动点P的运动路径最小,由两点距离公式可求解.
解:(1)∵抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.
∴当x=0时,y=5,则点A(0,5)
当y=0时,0=﹣x2+4x+5,
∴x1=5,x2=﹣1,
∴点B(﹣1,0),点 C(5,0)
设直线AC解析式为:y=kx+b,
∴
解得:
∴直线AC解析式为:y=﹣x+5,
(2)∵过点A作AD平行于x轴,
∴点D纵坐标为5,
∴5=﹣x2+4x+5,
∴x1=0,x2=4,
∴点D(4,5),
∴AD=4
设点F(x,﹣x2+4x+5),则点E坐标为(x,﹣x+5)
∴EF=﹣x2+4x+5﹣(﹣x+5)=﹣x2+5x,
∵四边形AFDE的面积=AD×EF=2EF=﹣2x2+10x=﹣2(x﹣)2+
∴当x=时,四边形AFDE的面积的最大值为,
∴点F(,);
(3)∵抛物线y=﹣x2+4x+5=﹣(x﹣2)2+9,
∴对称轴为x=2,
∴MN=2,
如图,将点C向右平移2个单位到点H(7,0),过点F作对称轴x=2的对称点G(,),连接GH,交直线x=2于点M,
∵MN∥CH,MN=CH=2,
∴四边形MNCH是平行四边形,
∴NC=MH,
∵动点P的运动路径=FM+MN+NC=GM+2+MH,
∴当点G,点M,点H三点共线时,动点P的运动路径最小,
∴动点P的运动路径最短距离=2+=2+,
设直线GH解析式为:y=mx+n,
∴,
解得,
∴直线GH解析式为:y=﹣x+,
当x=2时,y=,
∴点N(0,).
【题目】为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.
学生 垃圾类别 | ||||||||
厨余垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
可回收垃圾 | √ | × | √ | × | × | √ | √ | √ |
有害垃圾 | × | √ | × | √ | √ | × | × | √ |
其他垃圾 | × | √ | √ | × | × | √ | √ | √ |
(1)求8名学生中至少有三类垃圾投放正确的概率;
(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.