题目内容
【题目】已知,∠ABC=48°,P是∠ABC内一定点,D、E分别是射线BA、BC上的点,当△PDE的周长最小时,∠DPE的度数是__________.
【答案】84°
【解析】试题解析:如图作点P关于直线AB的对称点F,作点P关于直线BC的对称点G,连接FG交AB于D,交BC于E,则△PDE的周长最小.
设∠ABP=∠ABF=x,∠CBP=∠CBG=y,则x+y=48°,
∵BP=BF,
∴∠BPF=∠BFP=(180°-2x)=90°-x.同法可得∠BPG=90°-y,
∴∠FPG=180°-x-y=132°,
∴∠BFP+∠BGP=132°,
∵∠BFG+∠BGF=180°-96°=84°,
∴∠PFG+∠PGF=132°-84°=48°,
∵DF=DP,EP=EG,
∴∠DFP=∠DPF,∠EGP=∠EPG,
∴∠EDP=2∠DFP,∠DEP=2∠EGP,
∴∠PDE+∠PED=96°,
∴∠DPE=180°-96°=84°,
故答案为:84°.
练习册系列答案
相关题目