题目内容
(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( )
分析:先由AD:DB=3:5,求得BD:AB的比,再由DE∥BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF∥AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.
解答:解:∵AD:DB=3:5,
∴BD:AB=5:8,
∵DE∥BC,
∴CE:AC=BD:AB=5:8,
∵EF∥AB,
∴CF:CB=CE:AC=5:8.
故选A.
∴BD:AB=5:8,
∵DE∥BC,
∴CE:AC=BD:AB=5:8,
∵EF∥AB,
∴CF:CB=CE:AC=5:8.
故选A.
点评:此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.
练习册系列答案
相关题目