题目内容
【题目】如图,Rt△ABC中,∠ACB=90°.
(1)以点C为圆心,以CB的长为半径画弧,交AB于点G,分别以点G,B为圆心,以大于GB的长为半径画弧,两弧交于点K,作射线CK;
(2)以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N,分别以点M,N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E;
(3)过点D作DF⊥AB交AB的延长线于点F,连接CF.
根据以上操作过程及所作图形,有如下结论:
①CE=CD;
②BC=BE=BF;
③;
④∠BCF=∠BCE.
所有正确结论的序号为( )
A.①②③B.①③C.②④D.③④
【答案】B
【解析】
①由作图过程可得,CE是BG的垂直平分线,BD是∠CBF的平分线,可以证明△BCD≌△BFD,根据全等三角形的性质进而可以判断;
②根据BC≠BE,即可判断;
③根据S四边形CDFB=S△BCD+S△BFD即可判断;
④根据△BCE与△BCF不全等,∠BCE≠∠BCF,即可判断.
如图,连接CF,交BD于点H,
由作图过程可知:
CE是BG的垂直平分线,BD是∠CBF的平分线,
设CE与AB交于点Q,
∴∠CQA=∠DFA=90°,
∴CQ∥DF,
∴∠CED=∠FDE,
∵BD是∠CBF的平分线,
∴∠CBD=∠FBD,
∵∠BCD=∠BFD=90°,
BD=BD,
∴△BCD≌△BFD(AAS),
∴∠CDB=∠FDB,
∴∠CDB=∠CED,
∴CE=CD,
所以①正确;
∵△BCD≌△BFD(AAS),
∴BC=BF,
但是BC≠BE,
∴②不正确;
∵S四边形CDFB=S△BCD+S△BFD
=BDCH+
BDFH
=CFBD.
∴③正确;
∵△BCE与△BCF不全等,
∴∠BCE≠∠BCF,
∴④不正确.
所以正确结论的序号为①③.
故选:B.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某宾馆有若干间标准房,当标准房的价格为元时,每天入住的国间数为
间,经市场调查表明,该宾馆每间标准房的价格在
元之间(含
元,
元)浮动时,每天人住的房间数
(间)与每间标准房的价格
(元)的数据如下表:
| …… | 190 | 200 | 210 | 220 | …… |
| …… | 65 | 60 | 55 | 50 | …… |
(1)根据所给数据在坐标系中描出相应的点,并画出图象.
(2)猜想(1)中的图象是什么函数的图象,求关于
的函数表达式,并写出自变量
的取值范围.
(3)设客房的日营业额为W (元).若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?