题目内容
【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8;④0<CE≤6.4.其中正确的结论是________.(把你认为正确结论的序号都填上)
【答案】①②④
【解析】
作AH⊥BC于H,如图,根据等腰三角形的性质易得∠B=∠ADE=∠C,于是可判断△ADE∽△ACD;在Rt△ABH中,利用三角函数的定义可计算出BH=8,则BC=2BH=16,所以当BD=6,则CD=10=AB,再证明∠EDC=∠BAD,则可判断△ABD≌△DCE;先证明△ABD∽△DCE,分类讨论:当∠DEC=90°,则∠ADB=90°,可得BD为8;当∠EDC=90°,则∠BAD=90°,根据三角函数定义可得BD=;设BD=x,则CD=16-x,由△ABD∽△DCE,利用相似比可得CE=-,然后根据二次函数的性质可得CE的最大值为6.4,于是有0<CE≤6.4.
解:作AH⊥BC于H,如图,
∵AB=AC,
∴∠B=∠C=α,BH=CH,
而∠ADE=∠B=α,
∴∠ADE=∠C,
而∠DAE=∠CAD,
∴△ADE∽△ACD,所以①正确;
在Rt△ABH中,cosB=,
∴BH=10×=8,
∴BC=2BH=16,
当BD=6,则CD=10,
∵∠ADC=∠B+∠BAD,
而∠ADE=∠B=α,
∴∠EDC=∠BAD,
在△ABD与△DCE中
,
∴△ABD≌△DCE,所以②正确;
∵∠B=∠C,∠BAD=∠CDE,
∴△ABD∽△DCE,
△DCE为直角三角形,当∠DEC=90°,则∠ADB=90°,BD为8;
当∠EDC=90°,则∠BAD=90°,BD=,所以③错误;
设BD=x,则CD=16-x,
由△ABD∽△DCE得,即,
∴CE=-,
∴CE的最大值为6.4,
∴0<CE≤6.4,所以④正确.
故答案为:①②④.
【题目】随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯.由此催生了一批外卖点餐平台,已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取80名点外卖的用户进行统计,按送餐距离分类统计结果如下表:
送餐距离x(千米) | 0x1 | 1x2 | 2x3 | 3x4 | 4x5 |
数量 | 12 | 20 | 24 | 16 | 8 |
(1)从这80名点外卖的用户中任取一名用户,该用户的送餐距离不超过3千米的概率为 ;
(2)以这80名用户送餐距离为样本,同一组数据取该小组数据的中间值(例如第二小组(1<x ≤2)的中间值是1.5),试估计利用该平台点外卖用户的平均送餐距离;
(3)若该外卖平台给送餐员的送餐费用与送餐距离有关,不超过2千米时,每份3元;超过2千米但不超4千米时,每份5元;超过4千米时,每份9元. 以给这80名用户所需送餐费用的平均数为依据,若送餐员一天的目标收入不低于150元,试估计一天至少要送多少份外卖?