题目内容
【题目】已知在△ABC中,∠BAC=90°,M是边BC的中点,BC的延长线上的点N满足AM⊥AN.△ABC的内切圆与边AB、AC的切点分别为E、F,延长EF分别与AN、BC的延长线交于P、Q,则=( )
A. 1B. 0.5C. 2D. 1.5
【答案】A
【解析】
取△ACB的内切圆的圆心是O,连接OE、OF,得出正方形AEOF,求出AE=AF,推出∠AEF=∠AFE=∠CFQ,根据直角三角形斜边上中线性质求出AM=MC,推出∠MCA=∠MAC,根据∠BAC=∠MAG=∠MAN=90°,求出∠GAE=∠MAC=∠MCA,∠EAM=∠CAP,根据三角形的外角性质得出∠GAE=∠APE+∠AEP,∠MCA=∠Q+∠CFQ,求出∠Q=∠NPQ,推出PN=NQ即可.
取△ACB的内切圆的圆心是O,连接OE、OF,作NA的延长线AG,
则OE⊥AB,OF⊥AC,OE=OF,
∵∠BAC=90°,
∴四边形AEOF是正方形,
∴AE=AF,
∴∠AEF=∠AFE,
∵∠BAC=90°,M为斜边BC上中线,
∴AM=CM=BM,
∴∠MAC=∠MCA,
∵∠BAC=90°,AN⊥AM,
∴∠BAC=∠MAG=∠MAN=90°,
∴∠GAE+∠EAM=90°,∠EAM+∠MAC=90°,∠MAC+∠CAN=90°,
∴∠GAE=∠MAC=∠MCA,∠EAM=∠CAP,
∵∠GAE=∠APE+∠AEP,∠MCA=∠Q+∠CFQ,
∵∠AEF=∠AFE=∠CFQ,∠EPA=∠NPQ,
∴∠Q=∠NPQ,
∴PN=QN,
∴=1,
故选:A.
练习册系列答案
相关题目