题目内容

如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是   
【答案】分析:首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值范围.
解答:解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1.
在Rt△CDG中,由勾股定理得:DG==
设∠DCG=θ,则由题意可得:
S=2(S扇形CDE-S△CDG)=2(-×1×)=-
∴S=-
当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.
当r=时,DG==1,∵CG=1,故θ=45°,
∴S=-=-1;
若r=2,则DG==,∵CG=1,故θ=60°,
∴S=-=-
∴S的取值范围是:-1≤S<-
故答案为:-1≤S<-
点评:本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式,并分析其增减性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网