题目内容

精英家教网如图,正三角形ABC的边长为l,点M,N,P分别在边BC,AB上,设BM=x,CN=y,AP=z,且x+y+z=1.
(1)试用x,y,z表示△MNP的面积
(2)求△MNP面积的最大值.
分析:(1)由正三角形ABC的边长为l,BM=x,CN=y,AP=z,即可求得MC,NA,PB的值,又由S△MNP=S△ABC-S△PBM-S△MCN-S△NAP与x+y+z=1,即可求得△MNP的面积;
(2)由(x+y+z)2=x2+y2+z2+2(xy+yz+zx)=1与x2+y2+z2≥xy+yz+zx,即可求得xy+yz+zx的最大值,继而求得△MNP面积的最大值.
解答:解:(1)∵正三角形ABC的边长为l,
∴AB=BC=AC=1,
∵BM=x,CN=y,AP=z,
∴MC=1-x,NA=1-y,PB=1-z,
∴S△MNP=S△ABC-S△PBM-S△MCN-S△NAP=
3
4
-
1
2
x(1-z)
3
2
-
1
2
(1-x)y
3
2
-
1
2
(1-y)z
3
2
=
3
4
-
3
4
[x+y+z-(xy+yz+zx)]=
3
4
(xy+yz+zx);

(2)∵x+y+z=1,
∴(x+y+z)2=x2+y2+z2+2(xy+yz+zx)=1,
∵x2+y2+z2≥xy+yz+zx,
∴xy+yz+zx≤
1
3
(当x=y=z=
1
3
时,等号成立),
∴S△MNP=
3
4
(xy+yz+zx)≤
3
12
点评:此题考查了三角形的面积问题,几何不等式的应用问题,以及正三角形的性质.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用,注意几何不等式的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网