题目内容
【题目】如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为 .
【答案】7.
【解析】
试题解析:∵AB=AC,
∴可把△AEC绕点A顺时针旋转120°得到△AE′B,如图,
∴BE′=EC=8,AE′=AE,∠E′AB=∠EAC,
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠EAC=60°,
∴∠E′AD=∠E′AB+∠BAD=60°,
在△E′AD和△EAD中
∴△E′AD≌△EAD(SAS),
∴E′D=ED,
过E′作EF⊥BD于点F,
∵AB=AC,∠BAC=120°,
∴∠ABC=∠C=∠E′BA=30°,
∴∠E′BF=60°,
∴∠BE′F=30°,
∴BF=BE′=4,E′F=4,
∵BD=5,
∴FD=BD-BF=1,
在Rt△E′FD中,由勾股定理可得E′D=,
∴DE=7.
练习册系列答案
相关题目