题目内容
【题目】如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.
(1)求抛物线的表达式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;
(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.
【答案】
(1)
解:由题意,可得C(1,3),D(3,1).
∵抛物线过原点,∴设抛物线的解析式为:y=ax2+bx.
∴ ,
解得 ,
∴抛物线的表达式为:y=﹣ x2+ x
(2)
解:存在.
设直线OD解析式为y=kx,将D(3,1)代入,
求得k= ,
∴直线OD解析式为y= x.
设点M的横坐标为x,则M(x, x),N(x,﹣ x2+ x),
∴MN=|yM﹣yN|=| x﹣(﹣ x2+ x)|=| x2﹣4x|.
由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.
∴| x2﹣4x|=3.
若 x2﹣4x=3,整理得:4x2﹣12x﹣9=0,
解得:x= 或x= ;
若 x2﹣4x=﹣3,整理得:4x2﹣12x+9=0,
解得:x= .
∴存在满足条件的点M,点M的横坐标为: 或 或
(3)
解:∵C(1,3),D(3,1)
∴易得直线OC的解析式为y=3x,直线OD的解析式为y= x.
如解答图所示,
设平移中的三角形为△A′O′C′,点C′在线段CD上.
设O′C′与x轴交于点E,与直线OD交于点P;
设A′C′与x轴交于点F,与直线OD交于点Q.
设水平方向的平移距离为t(0≤t<3),
则图中AF=t,F(1+t,0),Q(1+t, + t),C′(1+t,3﹣t).
设直线O′C′的解析式为y=3x+b,
将C′(1+t,3﹣t)代入得:b=﹣4t,
∴直线O′C′的解析式为y=3x﹣4t.
∴E( t,0).
联立y=3x﹣4t与y= x,解得x= t,
∴P( t, t).
过点P作PG⊥x轴于点G,则PG= t.
∴S=S△OFQ﹣S△OEP= OFFQ﹣ OEPG
= (1+t)( + t)﹣ t t
=﹣ (t﹣1)2+
当t=1时,S有最大值为 .
∴S的最大值为 .
【解析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.设点M的横坐标为x,则求出MN=| x2﹣4x|;解方程| x2﹣4x|=3,求出x的值,即点M横坐标的值;(3)设水平方向的平移距离为t(0≤t<3),利用平移性质求出S的表达式:S=﹣ (t﹣1)2+ ;当t=1时,s有最大值为 .
【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.