题目内容
【题目】如图,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,
(1)求证:△BEC≌△DEC:
(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.
【答案】(1)证明见解析;(2)65°.
【解析】
(1)根据正方形的性质得出CD=CB,∠DCA=∠BCA,根据SAS即可证出结论;
(2)根据对顶角相等求出∠AEF,根据正方形的性质求出∠DAC,根据三角形的内角和定理求出即可.
(1)证明:∵四边形ABCD是正方形,
∴CD=CB,∠DCA=∠BCA,
在△BEC和△DEC中
∴△BEC≌△DEC(SAS).
(2)解:∵∠DEB=140°,
∵△BEC≌△DEC,
∴∠DEC=∠BEC=70°,
∴∠AEF=∠BEC=70°,
∵∠DAB=90°,
∴∠DAC=∠BAC=45°,
∴∠AFE=180°-70°-45°=65°.
答:∠AFE的度数是65°.
练习册系列答案
相关题目