题目内容

如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.

(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=   度.
解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
∵在△BCP和△DCP中,
∴△BCP≌△DCP(SAS)。
(2)证明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP。
∵PE=PB,∴∠CBP=∠E。∴∠DPE=∠DCE。

∵∠1=∠2(对顶角相等),
∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,
即∠DPE=∠DCE。
∵AB∥CD,
∴∠DCE=∠ABC。
∴∠DPE=∠ABC。
(3)58

试题分析:(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可。
(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证。
(3)根据(2)的结论解答:
与(2)同理可得:∠DPE=∠ABC,
∵∠ABC=58°,∴∠DPE=58°。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网