题目内容
【题目】如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是( )
A.
B.
C.
D.
【答案】A
【解析】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,
∴方程ax2+(b﹣1)x+c=0有两个不相等的根,
∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,
又∵﹣ >0,a>0
∴﹣ =﹣ + >0
∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣ >0,
∴A符合条件,
故选A.
由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣ >0,即可进行判断.
练习册系列答案
相关题目